Model Estimators
centimators.model_estimators.keras_estimators
Keras-based model estimators with scikit-learn compatible API.
Organized by architectural family
- base: BaseKerasEstimator and shared utilities
- dense: Simple feedforward networks (MLPRegressor)
- autoencoder: Reconstruction-based architectures (BottleneckEncoder)
- sequence: Sequence models for temporal data (SequenceEstimator, LSTMRegressor)
BaseKerasEstimator
dataclass
Bases: TransformerMixin, BaseEstimator, ABC
Meta-estimator for Keras models following the scikit-learn API.
Source code in src/centimators/model_estimators/keras_estimators/base.py
MLPRegressor
dataclass
Bases: RegressorMixin, BaseKerasEstimator
A minimal fully-connected multi-layer perceptron for tabular data.
Source code in src/centimators/model_estimators/keras_estimators/dense.py
BottleneckEncoder
dataclass
Bases: BaseKerasEstimator
A bottleneck autoencoder that can learn latent representations and predict targets.
Source code in src/centimators/model_estimators/keras_estimators/autoencoder.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | |
SequenceEstimator
dataclass
Bases: BaseKerasEstimator
Estimator for models that consume sequential data.
Source code in src/centimators/model_estimators/keras_estimators/sequence.py
LSTMRegressor
dataclass
Bases: RegressorMixin, SequenceEstimator
LSTM-based regressor for sequence prediction.