Skip to content

Evaluators

NumerBlox offers evaluators for both Numerai Classic and Numerai Signals.

Common Metrics

For both NumeraiClassicEvaluator and NumeraiSignalsEvaluator you can set a custom metrics_list with all metrics you want to compute.

By default, metrics will include ["mean_std_sharpe", "apy", "max_drawdown", "calmar_ratio"]

All valid metrics for metrics_list are:

  • "mean_std_sharpe" -> Mean, standard deviation and Sharpe ratio based on Corrv2 (Numerai Correlation).

  • "apy" -> Annual Percentage Yield.

  • "max_drawdown" -> Max drawdown.

  • "calmar_ratio" -> Calmar Ratio.

  • "autocorrelation" -> Autocorrelation (1st order).

  • "max_feature_exposure" -> Max feature exposure.

  • "smart_sharpe" -> Smart Sharpe.

  • "legacy_mean_std_sharpe" -> Mean, standard deviation and Sharpe ratio based on legacy model contribution.

  • "fn_mean_std_sharpe" -> Feature Neutral mean, standard deviation and Sharpe ratio (can take some time to compute).

  • "tb200_mean_std_sharpe" -> Mean, standard deviation and Sharpe ratio based on TB200.

  • "tb500_mean_std_sharpe" -> Mean, standard deviation and Sharpe ratio based on TB500.

The following metrics only work if benchmark_cols are defined in full_evaluation:

  • "mc_mean_std_sharpe" -> Mean, standard deviation and Sharpe ratio based on model contribution.

  • "corr_with" -> Correlation with benchmark predictions.

  • "ex_diss_pearson" (alias "ex_diss") -> Exposure Dissimilarity to benchmark predictions using Pearson correlation.

  • "ex_diss_spearman" -> Exposure Dissimilarity to benchmark predictions using Spearman correlation. Will be slower compared to "ex_diss_pearson".

  • "churn" -> Churn is a statistic describing how the alpha scores of a signal changes over time.

  • "tb200_churn" -> Churn based on TB200.

  • "tb500_churn" -> Churn based on TB500.

Numerai Classic specific metrics

NumeraiClassicEvaluator can also compute FNCv3. If you want to compute this add fncv3_mean_std_sharpe to the metrics_list.

from numerblox.evaluation import NumeraiClassicEvaluator, FAST_METRICS

# Validation DataFrame to compute metrics on
# Should have at least era_col, pred_cols and target_col columns.
val_df = ...

evaluator = NumeraiClassicEvaluator(era_col="era", metrics_list=FAST_METRICS)
metrics = evaluator.full_evaluation(val_df, 
                                    pred_cols=["prediction"], 
                                    target_col="target",
                                    benchmark_cols=["benchmark1", "benchmark2"])

Numerai Signals specific metrics

NumeraiSignalsEvaluator offers Numerai Signals diagnostics scores. This is a special operation as it calls on Numerai servers and needs additional authentication, so it is not included in full_evaluation.

Example of how to get diagnostic scores for Numerai Signals:

from numerblox.misc import Key
from numerblox.evaluation import NumeraiSignalsEvaluator

evaluator = NumeraiSignalsEvaluator()

# A Numerai Signals model name you use.
model_name = "MY_MODEL"
# NumerBlox Key for accessing the Numerai API
key = Key(pub_id="Hello", secret_key="World")
# DataFrame with validation data containing prediction, date, ticker and data_type columns
val_df = pd.DataFrame()

evaluator.get_neutralized_corr(val, model_name=model_name, key=key, corr_col="validationRic")
# Returns a Pandas DataFrame with validationRic.

Custom functions

In addition to the default metrics, evaluators can be augmented with custom metrics. This can be done by defining a dictionary of functions and arguments.

The custom function dictionary should have the following structure:

{
    "func1": # Metric name
    {
        "func": custom_function,  # Function to call
        "args": { # General arguments (can be any type)
            "dataf": "dataf",
            "some_arg": "some_arg",
        },
        "local_args": ["dataf"]  # List of local variables to use/resolve
    },
    "func2":
    {
        "func": custom_function2,
        "args": { 
            "dataf": "dataf",
            "some_arg": "some_arg",
        },
        "local_args": ["dataf"]
    },
    (...)
}
  • The main keys (func1 and func2 in the example) will be the metric key names for the output evaluation DataFrame.

  • The func key should be a function that takes in the arguments defined in args as keyword arguments. func should be a callable function or class (i.e. class that implements __call__).

  • The args key should be a dictionary with arguments to pass to func. The values of the dictionary can be any type. Arguments that you want resolved as local variables should be defined as strings (see local_args explanation).

  • The local_args key should be a list of strings that refer to variables that exist locally in the evaluation_one_col function. These local variables will be resolved to local variables for func. This allows you to use evaluation_one_col variables like dataf, pred_col, target_col, col_stats, mean, per_era_numerai_corrs, etc.

Example of how to use custom functions in NumeraiClassicEvaluator:

from numerblox.evaluation import NumeraiClassicEvaluator

def residuals(dataf, target_col, pred_col, val: int):
    """ Simple dummy func: mean of residuals. """
    return np.mean(dataf[target_col] - dataf[pred_col] + val)

custom_functions = {
        "residuals": {
            # Callable function
            "func": residuals,
            "args": {
                # String referring to local variables
                "dataf": "dataf", 
                "pred_col": "pred_col",
                "target_col": "target_col",
                # Static argument
                "val": 0.0001,
            },
             # List of local variables to use/resolve
            "local_args": ["dataf", "pred_col", "target_col"] 
        },
}

evaluator = NumeraiClassicEvaluator(custom_functions=custom_functions)

# In evaluator residuals(dataf=dataf, pred_col="prediction", target_col="target", val="0.0001) is called.
metrics = evaluator.full_evaluation(val_df, 
                                    pred_cols=["prediction"], 
                                    target_col="target")
# metrics will contain a "residuals" column.